
J .  Fluid Mech. (1973), vol. 57, part 1, pp .  149-160 

Printed in Great Britain 
149 

Supercritical flow in a divergent channel 

By P. M. EAGLES 
Department of Mathematics, The City University, London 

(Received 24 April 1972) 

For flow of a viscous fluid in a divergent channel of small angle it is shown that 
small disturbances to the basic Jeffery-Hamel flow may grow, according to 
nonlinear theory, to produce a secondary (supercritical) flow, in which the main 
flow winds from side to side in the channel and vortices form, with the whole 
pattern moving slowly downstream. 

1. Introduction 
We wish to consider small but nonlinear perturbations to the nearly parallel 

steady flow of a viscous incompressible fluid in a wedge of small divergence. 
Theory and calculations have been given by others for exactly parallel flow in 
a channel. The method developed by Stuart (1960) and Watson (1960) is based 
on a perturbation series in terms of an amplitude function of time which turns 
out to have magnitude proportional to (R - Rc)&, where R, is the critical Reynolds 
number beyond which the flow is unstable in the linear theory. The perturbation 
stream function may be expanded in a Fourier series whose first term is multiplied 
by a complex amplitude function A(t ) ,  and it is found that 

The constant k, is positive when the flow is linearly unstable, and negative when 
the flow is linearly stable. Now for Poiseuille flow, where the basic flow is exactly 
parallel and parabolic, Reynolds & Potter (1967) and Pekeris & Shkoller (1967) 
have shown that k, > 0 for a range of wavenumbers around the critical point. 
This gives no possibility of the so-called supercritical secondary flow developing. 

The present work was undertaken mainly to show that k2 < 0 for some flows 
of physical interest, namely for those Jeffery-Hamel flows appropriate to 
a divergent channel, and to examine the form of the flow for large time when IA 1 
approaches a constant. 

There is some difficulty in applying Stuart’s method to nearly parallel flow. 
In  particular the boundary layer presents considerable difficulty. However, for 
flow in a wedge with small angle we are able t o  formulate the problem in a way 
that justifies proceeding as usual, except that the parabolic velocity profile of 
Poiseuille flow is replaced by a suitable Jeffery-Hamel profile. This will be 
explained in $2 .  

We show by calculation that in fact the constant Ic,  is negative for certain flows 
in channels. This allows the growth of small disturbances, as time increases, 
until they attain a constant amplitude; the perturbed flow after a long time takes 
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FIGURE 1. Illustration of the channel. The co-ordinates 5 and 7 are defined in (2.1). 

a rather interesting form, illustrated in figure 4, with the main flow winding from 
side to side and a pattern of vortices appearing, the whole configuration moving 
slowly downstream. 

2. Formulation of the basic problem 
For definiteness we imagine the physical situation described below (though 

other interpretations of our work are possible). Let us suppose we have a long 
straight-walled divergent channel, ACDB in figure 1. (This is smoothly attached 
to a curved-wall portion to the left and leads smoothly into a reservoir to the 
right.) We fix the points A and B at a distance 2b apart and imagine that we can 
swivel the walls about the points A and B to vary the divergence angle of the 
straight-walled part. Thus we have a t  our disposal the total volumetric flow 
rate 2M and the divergence angle 2a. 

We introduce co-ordinates g and 9 defined by 

r = @/a) eaE, 0 = aq, (2.1) 

where r and 0 are the polar co-ordinates in the physical plane, with the origin a t  
the point of intersection of CA and DB, such that the walls are given by 19 = f a. 
We note that a t  A and B the value of 5 is ( l /a )  In @/sin a)  and that this is approxi- 
mately zero when a is small. We note also that r -+ co as a -+ 0 with [ fixed, and 
this means that the origin tends to infinity to the left in figure 1. These co- 
ordinates are a special case of the more general co-ordinates introduced by 
Fraenkel (1963) in his study of channel flows. 

Let Y(t,q, t ‘ )  denote the stream function, where t’ is the time. The volumetric 
flow rate is 2M,  the kinematic viscosity is v and the divergence angle is 2a. Upon 
setting ‘P = H$ and t’ = (b2/M) r the vorticity equation reduces to the dimen- 
sionless form 

where R = M / v  is the Reynolds number and where 
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FIGURE 2. The Jeffery-Hamel velocity profiles w(q;  y )  for y = 3.57, 4.71 and 5.10. The 
centre of the channel is at 7 = 0 and the walls at 7 = 2 1. The profiles are even in r. 

The boundary conditions are that $ = & 1 when 7 = & 1 and a$/@ = 0 when 

There is a well-known family of exact, steady, [-independent solutions of (2.2), 
namely the Jeffery-Hamel solutions for flow in a wedge. Fraenkel(l962,1963) has 
shown that a certain selection of these, symmetric in 7 and denoted byC(7; R, a), 
are appropriate to a symmetric channel of small and slowly varying wall 
curvature, the first approximation to the actual steady flow being given by the 
function C with the local a. The velocity profiles g(7; R, a) = dG]dq can easily 
be shown, from (2.2), to satisfy 

(2.4) 

7 = & 1 .  

g'" + 4a2g' + 2aRgg' = 0, 

in which a prime denotes differentiation with respect to 7.  We shall later want 
to consider the limit a -+ 0 with y = aR fixed; and with the notation that 
g(7 ;  R, a)  -+ w(7; y )  as a 3 0 we see that 

9(7; R, a) = w(7;  7) + O(a2). (2.5) 

The numerical agreement is good. For example, with a = 0.157 and R = 30 
Fraenkel's calculations show that g differs from w by less than 1 % at all values 
of 7. The parameter y = Ra is restricted to a certain range for outward flows in 
a wedge. With R = 10, 0 < y < 5-05; with R = 20, 0 < y < 5-40; with R = co, 
0 < y < 5.46. The family of profiles w(p; y )  contains Poiseuille flow (y  = O ) ,  
profiles with inflexion points (y  > 1.80) and profiles with reversed flow near the 
walls (5.46 > y > 4.71). Some of the profiles are illustrated in figure 2. 

We wish to consider perturbations to the steady flow given by G(7; R, a)  in 
a wedge. We therefore set 
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with boundary conditions 

a@,/at = a$,/a, = 0 when 7 = k 1. ( 2 . 8 )  

We shall later use a perturbation scheme based on linear disturbance functions. 
Since the linear problem is rather complicated we first consider this, in order to 
decide on a suitable approximation to (2.7)) for small values of a. 

Let us first consider the limit of ( 2 . 7 )  as a + 0 with R fixed. It is easy to show 
that g + #( 1 - q2) ,  the Poiseuille flow profile for exactly parallel flow. If we dis- 
card the nonlinear terms and then set = # ( ~ ) e ~ ~ ( c - ~ ~ )  we obtain the well- 
known Orr-Sommerfeld problem 

} (2.9) 
(1/R) ( p - 2 k 2 # ” + k 4 # )  = i k { ( g , - c )  ( $ “ - P # ) - g ; # ] ,  

$=q5’=0 at  , = & I ,  
in which go = #( 1 - r2) .  

Now we consider the approximation as R + 00. At R = 00 we lose the fourth 
derivative, so we have a typical singular perturbation problem for large values 
of R. In  the Orr-Sommerfeld problem it is known from earlier work (Lin 1955; 
Eagles 1969) that there are regions of rapid variation with respect to 7 in the 
eigenfunction of (2.7). I n  particular d$/dy = O(R%) in a region of width O(R4) 
around the point yc, a t  which w(3) = c .  Also d$/dy = O(R4) in a wall layer. These 
two layers may coalesce under some circumstances. I n  any case, a proper 
asymptotic analysis which uses a stretched variable proportional to (7 - yc) R* 
near 7 = T~ shows us that the correct first approximation does require the terms 
in 1/R on the left-hand side of (2.9), however large R may become. It is clear, 
also from a simpler point of view, that we must retain these terms in order to 
deal with the viscous boundary conditions. All this is well known, and we have 
outlined the above arguments to prepare the way for an approximation to (2.7) 
under a different limiting process. 

In  order to get away from the Poiseuille flow case we now consider the process 
ct + 0 with y fixed. The parameter y = Ra defines the members of the profile 
family w ( 7 ; y )  of (2 .5 ) .  Hence the terms in 1/R in (2.7) are formally of O(a)  as 
a + 0, but an argument like the one above shows us that these terms must be 
retained, however small we take a,  for a proper first approximation. The other 
terms of O(a)  will all be discarded. We are thus led to the problem 

in which w = w(y; y )  with y = Ra. Some further remarks on the validity of the 
approximation are made in $ 5 .  

3. The expansion and amplitude equation 

The aim here is to show that certain disturbance functions $, which are un- 
stable according to linear theory will level off and attain a constant amplitude 
as time increases. The expansion method was suggested to the author by that of 
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FIGURE 3. Schematic diagram of a typical curve of (linear) neutral stability. Here R is 
the Reynolds number and k is the wavenumber. 

Matkowsky (1970), but since this work was completed Stewartson & Stuart 
(1971) have used an expansion of the same type for Poiseuille flow. 

We first note that if we assume that 

?,hl = s$(y) eik(t-CT)+ O(c2) (3.1) 

(where k is real and c is complex) and substitute this in (2.10) we obtain, from 
the O(e)  terms, the Orr-Sommerfeld problem 

} (3.2) 
( l /R )  (@"-2k2$ff+k4$)  = ~ ~ { ( z u - c )  ($"-k2$)-wn$},  

$ = $ ' = O  a t  r = - + l .  

If we fix y ,  which specifies the profile w(r ;  y ) ,  then for given values of R and k 
we may solve for the eigenvaluef- c. Curves in the R,k  plane on which the 
imaginary part of c is zero are the neutral curves for stability, and some of these 
have been calculated by Eagles (1966). A typical neutral curve is shownin figure 3. 

For any given value of Ic, if we increase R from zero, we find that the imaginary 
part of c will initially be negative and become positive when R > R,(k). Thus if 
c = c,+ic, we have 

Hence the linear disturbance of given wavenumber k becomes unstable for 
sufficiently large R (with k limited to a certain range). Therefore for R > R, we 
shall expect a physical disturbance to grow initially, since it will have, in general, 
components of the type (3.1) which are unstable. However, a pure disturbance 
like (3.1) will grow only when R > R,(k). In  order to examine the nonlinear 
effects we fix k and use the small parameter E ,  where 

ci = 0 at R = R,(k). (3.3) 

e2 = l/R,- 1/R, k fixed. (3.4) 

t = € 2 7 ,  (3.5) 

It is possible to obtain a consistent expansion as follows. We define a new 'slow' 
time variable 

t We refer here to that value of c with greatest imaginary part. 



154 P. M .  Eagles 

and introduce the notation 

where h(k) is the real part of c a t  R = R,(k) (on the neutral curve). We now set 

E = e W - A T ) ,  (3.6) 

$1 = e(411E + $1, -1E-l) + "($22E2 + $20 + $2,-2E-2) 

+ ~ ~ ( $ 3 3  E3 + $31 El + $3,-1E-l+ $3,-3 Ep3) + ..A, (3.7) 

where each of the functions $mn depends only on 7 and on the 'slow ' time t ;  thus 

$mn = $rnn(?, '1. (3.8) 
- 

It is clear that $,,-, = $mn, the complex conjugate of $,,, and that $mo is real. 
We note also that a/& in (2.10) operates on both En and $,,(7, t )  in a typical 
term of (3.7), but that its operation on $,n produces a multiplying factor of €2. 

Hence a term in a$,,/at occurs at  order e3. If we equate the coefficients of powers 
of emEn we obtain partial differential equations for the q5mn. With the notation 

the equations are as follows. 

L("$,, = 0. (3,lO) 

(3.11) 

(3.12) 

+ M ( 1 , 0 ,  $ 1 1 9  $20) + M (  - 132, $],-I, $22). (3.13) 

Here the terms of the form M ( p ,  q, $ik, q51m) are the nonlinear terms. Explicitly, 

where f = f (7 ,  t)  and g = g(7, t ) ;  then M is defined by 

M(P, 4 , f >  9 )  = N(P, %f, 9 )  +"q, P, s9.f). (3.15) 

The right-hand side of each of (3.9)-(3.13) depends only on functions from earlier 
equations in the set. The left-hand sides consist essentially of the Orr-Sommerfeld 
operator applied to the function q5mn except that k is replaced by nk in each case, 
and t appears as a parameter in the $mn, 

The boundary conditions 

q5mn = a$,,/aq = 0 at 7 = f 1 (3.16) 

are imposed, and we notice that the total volumetric flow rate and the Reynolds 
number are left exactly as they were for the steady flow. However, it is known 
from other work that the even eigenfunctions of the linear problem are the most 
unstable, and we therefore choose $11 to be even in 7. This is then the eigenfunction 
associated with that (most unstable) value of c which we discussed earlier in 
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connexion with the neutral stabi6ty curves. By examining (3.10)-(3.12) it  is 
now easy to see that 420 and 422 are odd while $31 is even. The even solution to 

9511 = 4 ) f l l ( 7 ) 9  (3.17) (3.10) is 

where A ( t )  is some function oft and 

This is just the Orr-Sommerfeld problem with c = h = real and with the appro- 
priate R,. We can solve for fll(7) and proceed. 

Wenowworkjustontheinterval0 6 7 < landfindfrom(3.1l)and(3.17) that 

4 2 2  = A2(t)f22(7), 
where the problem for f22(7)  is 

(3.19) 

L(2!f22(7) = W ( 1 7 1 9 f 1 1 7 f l l L  

f i 2 = f i 2  = 0 at 7 = 0;  f i 2  = f i z  = 0 at 7 = 1. 
- 

Similarly 9520 = A(t)A(t)fzo(7)7 (3.21) 

where the problem for fi0(7) is 

} (3.22) 
L(o'fio(7) = M(L - 1 9 f l l > f l , - l ) ,  

f i O  =fro = 0 at  7 = 0; f i0=fiO = 0 at 7 = 1. 

The functionsf,,(q) and f iO(7)  are uniquely determined by (3.20) and (3.22). 
The problem for $31(7, t )  is obtained from (3.13) and is 

L(1)$31 = A(t )  ( f z  - 2kzfrl+ k4f,J + (aA/dt) ( f 2 1 -  kzf11) 

+ A 2 @ )  4 t )  {M(1,09fl17f20) + M (  - 1 7  2>f1,-19f22)} (3.23) 

with the boundary conditions appropriate to a solution even in 7. The operator 
L(l) does not involve a/at, so that t is a parameter and (3.23) is an ordinary dif- 
ferential equation with 7 as the independent variable. Since the equation L(1)f = 0 
has the non-trivial solution f = fll with the same boundary conditions then 
(3.23) has a solution if and only if the integral of the product of the right-hand 
side with the adjoint eigenfunction is zero. We denote the adjoint eigenfunction 
by ~ ( 7 ) ;  the problem for w(7) is 

} (3.24) 
(l/Rl) (V'V- 2k2v" + k4v) = ik{(w - A )  (v"- k2v) + 2w'v'}, 

v = v ' = O  at  q = I ;  v = v ' " = O  a t  7 = O .  

Then the solvability condition applied to (3.23) yields 

dA/dt = UA + bA2B, (3.25) 

where (3.26) 

(3.27) 
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It is interesting to notice that with this formulation of the problem the 
amplitude equation is exact. Higher order effects would be dealt with by intro- 
ducing new amplitude functions as in Matkowsky (1970). The constant a depends 
only on the linear part of the problem, and if we expand the linear problem about 
R = R,, c = h + i0 it is easy to show that 

-ikc = -ikh+s2a+ ... . (3.28) 

We therefore know that the real part of a is positive, since it represents the part 
of c which causes growth for R > R, in the linear problem. 

The constant b represents nonlinear effects. We have calculated this constant 
and found that its real part is positive, a t  least for some range of the parameters 
y and k .  Some numerical results will be presented later. 

4. The limiting flow for large time 

result to the complex conjugate to obtain 
Toobtainadifferentialequationfor lA(t)I2 we multiply (3.25) by Bandaddthe 

dlA(2fdt = k1lA(2+k,JA(4, (4.1) 

where k, = a+Z = 2a,, k, = b + b  = 2b,, (4.2) 

[ A [  -+ (a,/lb,I)* as t --f co. (4.3) 

a, and a, denote the real and imaginary parts of a, and similarly for b. Now for 
real s (R > R,(k)) we know that a, > 0. If b, < 0 it can easily be seen that 

It should be realized that the constant b, and the amplitude function A(t) ,  
depend upon the normalization adopted for fll(r), although the final stream 
function is, of course, independent of this. If we multiply fll by a constant K 
thenf,, andf,, are multiplied by K2,fS1  is multiplied by K3, b is multiplied by K2,  
and A(t) is multiplied by 1/K. Let us now suppose that 

s,’ If11(r)I d r  = 1.  

J: IA(~).L(~)I dy + (ar/lbrl)& as t 4 m. 

(4.4) 

Then we can see that with a, > 0 and b, < 0 

(4.5) 

Therefore c(u,/~b,~)* is a measure of the size of the perturbation stream function 
and we shall expect the expansion to be useful if this quantity is small compared 
with the steady-state stream function. 

Although IA I + constant as t + co it  can easily be shown that arg {A(t)) does 
not. In fact 

When we write the flow in terms of the original time variable r we see that since 
t = $7 the variation in the argument of A(t) is an O(s2)  effect. The stream function 
for the total flow becomes 

A(t) --f (~,/~b,~)*exp{i(b,ai-b,u,)t/b,) as t -+ 00. (4.6) 

II. = ~ n m d ~ + 2 R e { s ( a , / ( b , ~ ) * f l l ( ~ ) e ~ ~ ~ ~ - * ’ ~ } + O ( t ~ )  (4.7) 

for large values of the time. 



Supercritical $ow in a divergent channel 157 

1 

- 1  
0 2n 

FIGURE 4. Streamlines of the secondary flow with 7 fixed. The case illustrated is with 
y = 4.71, e = 0.162, R = 100 and E = 0.0475.Theco-ordinates and 7 are defined in (2.1). 

We have calculated the flow given by (4.7) for a number of cases, and a typical 
pattern is shown in figure 4. The case illustrated has very weak vortices. Stronger 
vortices are obtained with larger values of B ,  i.e. at  higher values of R. Such a flow 
might be realized if we gradually increased R and simultaneously decreased a, 
keeping y = Ra fixed, until R became slightly greater than R,(I%), and then 
introduced a small disturbance like fll(y) eikx. This should grow t o  give the flow 
pattern of figure 4. 

It is possible that a more general disturbance might give a flow pattern of 
a similar type through the linear selection of the most unstable mode. In  this 
case the most likely value of k is that which gives R,(k) = R,. 

However, recent work by Stewartson 8t Stuart (1971) shows that the amplitude 
equation (3.25) should be modified for more general initial disturbances. Our 
amplitude equation is a special case of their more general equation. 

5. The numerical work and some results 
Fortunately we had some results for the neutral curves of the linear problem 

for various values of y. These figures (unpublished) were tables of k ,  & ( I % )  and 
c,(k) on the neutral curves, calculated some years ago by a well-tested computer 
program (Eagles 1966). To find the linear eigenfunction fll(7) of problem (3.18) 
we used the appropriate values of R, and c, for our chosen value of k .  We then 
defined two integrals of (3.18) : 

U,(q), satisfying u, = u; = u: = 0, u; = 1 at 7 = 0; (5.1) 

U2(7), satisfying UL = L?; = U$ = 0, u2 = 1 at 7 = 0. (5.2) 

We then chose the constants A and B in AUl(7)+BU,(7) = f(7) to make f(7) 
satisfy f = 0 at 7 = 1, and t o  satisfy (4.4). We checked that this then satisfied 
f '  = 0 at  7 = 1. This provided a useful check on the calculations, for if either 
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R,, or c,, or the integrations had been in error we should have found f'( 1) + 0 
(except by an almost impossible cancellation of errors). It should be noted that, 
in these calculations, R, was not large enough to require us to use any special 
techniques. A straight-forward fourth-order Runge-Kutta scheme was found to 
be sufficiently accurate for values of R,k up to about 200, at which value 
48 Runge-Kutta steps gave an accuracy of about 34 significant figures. For 
lower values of R,k the accuracy was much better. 

Having found fll(q) we then proceeded to solve problems (3.20) and (3.22) 
forf,,(T) andf,,(q). These presented no difficulty. We combined two integrals of 
the homogeneous differential equation and a particular integral of the full dif- 
ferential equation, each satisfying the boundary conditions at  q = 0, in order to 
satisfy the conditions a t  7 = 1. 

The adjoint problem (3.24) for v(q) was solved and checked by the same method 
as that used for fll(q). The adjoint was also re-calculated in a separate program 
by using a matrix formulation of the adjoint problem, involving different 
integrations, to provide another check. 

The constants a and b of (3.25), under the condition (4.4), were then found 
using Simpson's formula for integration. The results were obtained to an estimated 
accuracy of 3 significant figures (at worst), by taking 48 steps for the eigenfunction 
and 24 steps forf,,(q) andf,,(q). 

As a further check on the results we replaced the operator L(n) by the operator 

For this operator one can calculate the functionsf,,,f,, andf,, and the constants 
a and b analytically, starting with the linear eigenfunction fll = COB nq + 1. The 
results were found to agree with those from the computer program. 

In table 1 we present a selection of the results for the constants, and in figure 2 
we show some of the velocity profiles w(7; y) .  For the case y = 3.07 we calculated 
only one case, with k = 2.0. This was because in this case we did not have the 
neutral-curve figures available from earlier work and considerable calculations 
were needed for each value of k. The value chosen is a little above the linear 
critical value. 

At this point we shall discuss briefly the validity of the approximations. There 
are two distinct processes of approximation involved. One is replacing the exact 
partial differential equation (2.7) by the modified equation (2.10), by ignoring 
those terms in (2.7) which are formally of O(a) with y = Ra fixed, except that 
we retain (1/R) D4@,. The other approximation is the use of series (3.7) as an 
approximation to a solution of (2.10). We think of the wavenumber k as fixed. 
The first approximation becomes better asa  becomes smaller, that is as R becomes 
larger. The second approximation becomes better as 8 becomes smaller, that is 
as R approaches R,(k) on the neutral curve appropriate to the linear version of 
(2.10). Thus the two processes are competing, for as one approximation becomes 
better the other becomes worse. However, if B,(k) is sufficiently large we shall 
expect both approximations to be good in the region R,(k) < R < co. For the 
case illustrated (y  = 4.71) we have chosen k = 1.934, and then R,(k) = 27.58. We 



k R, 
2-000 83.40 

2.284 67.96 
1.833 54.68 
1-383 65-65 

2.944 52.09 
1-934 27-58 
0.9655 50.75 

3.087 35.84 
2.082 20-83 
0.8905 41.01 

3.582 29.47 
2.083 12.80 
1.334 15-92 

A 
0.9041 

0.9759 
0.8628 
0-7000 

1.147 
0.853 
0.349 

1.2062 
0.8831 
0.1624 

1.436 
0.7992 
0.1910 

y = 3.07, R, 5 80 

a T  a, bT 

12.3 6.98 -45.0 

y = 3.57, R, = 54.7 

11.8 5.28 -54.0 
13.6 1.39 -37.4 
13.3 -0.58 -20.2 

y = 4.71, R, = 27.6 

12.1 0.300 -76.6 
14.4 -2.04 -32.5 
11.6 -4.91 - 7-92 

y = 5.10, R, = 20.8 

1.52 -0.764 -75.3 
1.49 -2.39 -33.1 
1.12 -5.74 -6.11 

y = 5.45, R, = 12.8 

19.0 -5.17 -94.6 
15.1 -3.29 -24.7 
12.6 -5.09 - 9.87 

b, 
- 10.0 

- 0.620 
0.246 

- 2.17 

45.9 

- 3.70 
3.42 

49.1 
4.83 

- 3.85 

91.7 
24.7 
- 3.26 

(4 Ib, I ) * 
0.522 

0.468 
0.602 
0-812 

0.399 
0.665 
1.21 

0.449 
0.671 
1.36 

0.448 
0.779 
1.13 

TABLE 1. The values of the constants a and 6, which are defined in (3.25)-(3.27), and the 
values of the equilibrium amplitude (aT/lbTl) h .  These constants were calculated withfil(v) 
normalized according to (4.4). For the given value of k, R,(k) is the Reynolds number on 
the neutral curve and A(k)  is the real part of the linear eigenvalue c on the neutral curve. 

have chosen R = 100 and thus E = 0.162 and a = 0.0475. In  this case we checked 
tht .computed figures and found that typical terms like aa2$,/ay2 are indeed 
small compared with the terms retained. For example, near y = 1, 

ala2$,,/ay21 = 0.85, while (l/Rl) Ia4#,,/ay41 = 18. 

However, in obtaining (2.10) we also replaced eZa5 a/ar by a/&. This requires that 
eZa5 should not vary too much over a wavelength 271/k. We have (2a) (27r/k) = 0.30 
so the requirement is reasonably satisfied. At the same time e = 0.162 is sufficiently 
small. By taking cases of smaller y we would find larger R,(k) near R,, and so 
even better cases for application. However, computational difficulties arise be- 
cause of the large values of R,involved, and such calculations were not attempted. 

We found the pattern of figure 4 typical for values of y between 3.07 and 5.45, 
but our approximation is of doubtful value for the higher values of y since a 
becomes rather too large. On the other hand, we were unable to calculate stream- 
lines for smaller values of y because R, becomes so large that special techniques 
are needed for solving the differential equations, and our simple program would 
not work. We were therefore unable to make a direct check with the results of 
Reynolds & Potter (1967) for Poiseuille flow (y = 0) ,  that b, is positive over most 
of the neutral curve, but negative on the lower branch for large values of R. 
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Appendix. The Jeffery-Hamel velocity profiles 
The velocity profiles w ( 7 ; y )  used in this work are conveniently obtained by 

specifying the parameter m, which first decreases from 1 to 0.5 and then increases 
again to 0.57, and then finding b as the solution of 

3mcn2(blm) = 2m-1 (A 1)  

p = E(bIm)-bdn2(bIm) (A 2) 

= 6bp (A 3) 

and w(7;  7 )  = (mb/p) {sn2 - sn2 (by Im)}. (A 4) 

in such a way that cn(b1m) increases as m varies as described above, while 
0 6 b 6 2K. Then with 

we find that 

These are the JHII family members; see Fraenkel (1962) for further details. 
The parameter m is the square of the usual modulus, sn (blm) etc. are the usual 
Jacobean elliptic functions of modulus Jm, and K is the quarter-period. 
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